Introduction to DAA
Master Theorem - General form of recurrance relation\(\(T(n)\ = \ aT(\frac{n}{b}) + f(n)\)\)\(\(f(n) \ = \ \theta(n^klog^pn)\)\)Where a >= 0 and b > 0
Cases
1. If $log^a_b > k$ then $\theta(n^{log^a_b})$
2. If $log^a_b = k$ then
1. if p > -1 then $\theta(n^klog^{p+1}n)$
2. if p = -1 then $\theta(n^kloglogn)$
3. if p < -1 then $\theta(n^k)$
3. if $log^a_b < k$ then
1. if p >= 0 $\theta(n^klog^pn)$
2. if p < 0 then $\theta(n^k)$